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Background: Heterogeneity in the response to PM2.5 is hypothesized to be related to differences in particle
composition acrossmonitoring sites which reflect differences in source types aswell as climatic and topographic
conditions impacting different geographic locations. Identifying spatial patterns in particle composition is a
multivariate problem that requires novel methodologies.
Objectives:Use cluster analysismethods to identify spatial patterns in PM2.5 composition. Verify that the resulting
clusters are distinct and informative.
Methods: 109 monitoring sites with 75% reported speciation data during the period 2003–2008 were selected.
These sites were categorized based on their average PM2.5 composition over the study period using k-means
cluster analysis. The obtained clusterswere validated and characterized based on their physico-chemical charac-
teristics, geographic locations, emissions profiles, population density and proximity to major emission sources.

Results: Overall 31 clusters were identified. These include 21 clusters with 2 or more sites which were further
grouped into 4 main types using hierarchical clustering. The resulting groupings are chemically meaningful
and represent broad differences in emissions. The remaining clusters, encompassing single sites, were character-
ized based on their particle composition and geographic location.
Conclusions: The framework presented here provides a novel tool which can be used to identify and further clas-
sify sites based on their PM2.5 composition. The solution presented is fairly robust and yielded groupings that
were meaningful in the context of air-pollution research.
© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

First demonstrated by the Harvard Six-City study (Dockery et al.,
1993) and the American Cancer Society Study (Pope et al., 1995), the
association between PM and mortality has been replicated in many
populations, both within the United States and abroad (Pope and
Dockery, 2006). However, the magnitude of the effect has displayed
considerable heterogeneity across studies (Bell et al., 2005; Janssen et
al., 2002; Samet et al., 2000; Zanobetti et al., 2002). It is possible that
this observed heterogeneity of effect may be attributed to the consider-
able differences in the PM composition across these study sites (Bell et
al., 2007). This is further confirmed by investigations that attribute dif-
ferent levels of toxicity to particles from different sources (Laden et al.,
2000; Mar et al., 2000; Zhou et al. (2011)). Toxicological studies have
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demonstrated the toxic potential of many individual PM components
including sulfate, zinc, nickel and lead (Chuang et al., 2007; Gao et al.,
2004; Lippmann et al., 2006; O'Neill et al., 2005).

The importance of considering multi-pollutant mixtures in air pollu-
tionwas highlighted in 2004 by theNational Academies of Science (NAS)
(NRC, 2004). In response, the EPA is in the process to develop a multi-
pollutant air quality management plan as described in their Multi-
Pollutant Report of 2008 (EPA, 2008). Adopting a multi-pollutant
approach is extremely challenging due to the highly complex interac-
tions between source emissions, atmospheric processes and effects on
human health and ecosystems. One of the key components of a multi-
pollutant approach is the ability to capture themultivariate relationship
betweenpollutants at a given site. A better grasp of this relationshipwill
enhance our understanding of the interaction between pollutants as
well as further the human health effects related to exposure to these
complex mixtures.

The EPA has considered a variety of ways in which air pollutants
might interact with each other (Table 1). Practically however, because
of a knowledge gap in thefield, the EPA is forced to consider all pollutant
interactions as additive (Mauderly et al., 2010). Populations are exposed
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Table 1
Interaction of pollutants.

(EPA, 2000)

Additivity: Effect of the combination equals the sum of individual effects
Synergism: Effect of the combination is greater than the sum of individual effects
Antagonism: Effect of the combination is less than the sum of individual effects
Inhibition: A component having no effect reduces the effect of another component
Potentiation: A component having on effect increases the effect of another component
Masking: Two components have opposite, canceling effects such that no

effect is observed from the combination
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daily to complex mixtures of pollutants, some of which are known or
suspected to cause health effects at ambient concentrations. Under-
standing the effect of the mixtures on health, rather than the effect of
the individual components is a crucial step that must be undertaken in
order to further our knowledge of this field. Therefore, it is essential
that exposure assessment develop new tools to describe population ex-
posures that moves beyond relating individual pollutant concentration
at a given site on a given day.

There are currently a limited number of approaches that allow for
the investigation ofmulti-pollutant mixtures in epidemiological studies
(Dominici et al., 2010; Vedal and Kaufman, 2011). Exposure data is
typically represented in high dimensionality data sets in which each
pollutant is assigned a concentration for each time period of observa-
tion. Previous published multivariate approaches have included
factor analysis methods and principle component methods such as
specific rotation factor analysis (Koutrakis and Spengler, 1987), ab-
solute principal-component analysis (Thurston and Spengler,
1985), UNMIX (Henry and Kim, 1990; Kim and Henry, 1999) and
positive matrix factorization (Paatero and Tapper, 1994). These
methods have been successful at identifying individual source con-
tributions to integrated daily measurements samples at a specific or
given site. The results of these multivariate methods are used by epide-
miologists in time series analysis to investigate the health effects asso-
ciated with specific sources (Schwartz et al., 2002; Thurston et al.,
2005).

We propose an approach that uses cluster analysis to identify spatial
patterns in air pollution data. Short- and long-term patterns in air pol-
lution as well as spatial distribution patterns have been identified and
described in the literature (Beelen et al., 2009; Jerrett et al., 2005;
Koutrakis et al., 2005; Lefohn et al., 2010). At a single site, these patterns
are the result of diurnal variations in UV intensity, season, temperature,
cloud cover, mixing height as well as changes in source emissions such
as higher traffic density on weekdays, increased power plant emissions
during high demand periods and increase wood combustion in the
winter. Between sites, differences in air pollution patterns can be attrib-
uted to different source types, different climatic conditions, distribution
of regional pollutants over a geographic area and differences in soil
composition.

Unsupervised cluster analysis encompasses a broad range of algo-
rithms that identify multivariate patterns in data sets. Two broad cate-
gories of these algorithms are hierarchical and partitioning algorithms.
The output of the algorithmmay be “hard” if each observation is attrib-
uted to only one cluster or “fuzzy” if an observationmay be assigned to a
certain degree tomore than one cluster. In this analysis, we were inter-
esting in identifying a “hard” solution so that each site was uniquely
assigned to a single cluster.

Recently, we used cluster analysis to identify distinct daily multi-
pollutant profiles at a given site, Boston, MA, (Austin et al., 2012).
Clustering has been used previously to describe diurnal variation in
gaseous and particle pollutants (Adame et al., 2012; Flemming et al.,
2005). K-means clustering was used by Kim et al. (2008) in order to
group sites based on the temporal fluctuation of PM2.5. Hierarchical
clustering has also been used to identify distinct sources of volatile
organic compounds based on the grouping of the measured concen-
trations (Kavouras et al., 2001). It has also been used to provide a de-
scription of regional chemical and transport processes associated
with particular regimes and can inform which sources may be most
important in the development of pollution episodes. Beaver and
Palazoglu (2006) used an aggregated solution of k-means cluster
analysis to characterize classes of ozone episodes occurring in the
San Francisco bay. Pakalapati et al. (2009) used hierarchical clustering
and sequencing to group air flow patterns associated with elevated
ozone concentrations. Cluster analysis has also been used to cluster
back trajectories to identify different classes of synoptic regimes
over the duration of the trajectories (Comrie, 1996; Taubman et al.,
2006).

In this paper, cluster analysis will be used to group sites across the
United States based on their PM2.5 composition profiles using data
collected between 2003 and 2008. The main interest is identifying
long-term differences in the composition of PM2.5 across the different
sites. These clusters of cities will then be characterized and validated
based on physico-chemical characteristics, geographic locations,
emission profiles, population density and position with respect to
major emitter sources. It is anticipated that this novel approach will
allow for a better understanding of the heterogeneity in PM2.5 com-
position across the United States. We hope that the identified clusters
can be used to further investigate the heterogeneity in the relation-
ship between PM2.5 concentration andmortality andmorbidity across
the United States.

2. Methods

2.1. Data collection

Data for this analysiswas obtained from theHEI Air Quality Database
(2010). This database includes pollutant concentrations from the EPA's
AQS Particulate Matter Air Quality Data. The PM2.5 mass and speciation
data is available for 54CORE sites and 234 supplemental sites from2000
to 2010. These are 24-h samplers, midnight to midnight local standard
time, with different sampling frequencies depending on the site loca-
tion. Emissions data for each site is obtained from the National Emis-
sions Inventory Data of 2002 and Census population data from the
2000 Census. We require that sites have less than 25%missing observa-
tions for the elements of interest. In addition, we require that each sea-
son within the time period has less than 25% missing data. This is to
ensure that the site means are not unduly influenced by missing data
within a given season. This resulted in 109 sites with complete data
sets between January 2003 and December 2008. These dates were cho-
sen in order to maximize the number of sites with 5 years of complete
data. At each site, sampling occurred every 3rd or every 6th day
throughout the year. Fig. 1 presents the location of the sampling sites.

2.2. Data preparation

The variables used in the clustering were the following components
of PM2.5: total EC, total OC, SO4

2−, NO3
−, Na+, NH4

+, Se, Si, Ca, Fe, Ni, V, Cu,
Zn, Pb, Mn, As, Cr, and K. Other elements obtained as part of the specia-
tion of the filters were considered were excluded either because of the
analytical measurement was judged to be unreliable or because a large
proportion of the measurements were below the detection limit. For
each site, an overall site mean of each variable was obtained. These
means were divided by the mean PM2.5 concentration of that site to
create a unique set of species fractions used to characterize the PM2.5

composition. These species fractions reflect the unique interplay of
sources andmeteorology at each site and they describe the composition
of PM2.5 in a given element at that site (Eq. 1). To eliminate differences
in the order of magnitude between concentration levels of the
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Fig. 1. Chemical speciation sites (n = 109).
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measured pollutants, the species fractionswere transformed to a robust
z-score as described in Eq. 2.
Eq. 2
Modified Z-score.

Zij ¼
SFij−Median SFj

� �
Median SFij−Median SFj

� �� �

where:

Zij represents the robust z score of the Fraction of Species j at
site i

SFij represents the Fraction of Species j at a site i
SFj represents the Fraction of Species j at each site

Eq. 1
Species fraction.

SFij ¼
Sij

PM2:5i

where:

SFij represents the Fraction of Species j at a site i
PM2:5i represents the mean PM2.5 concentration at site i

Sij represents the mean concentration of Species j at site i
2.3. Clustering

Themain objective of this analysis was to cluster together citieswith
the most similar species fractions. Clustering of the mean values of the
multi-pollutant profiles represents the overall population exposures in
these cities over the study period. These clusters may improve our
understanding of the heterogeneity in the long-term effects of PM2.5

exposure among populations.
The k-means algorithm used was developed by Hartigan and

Wong (1979). It seeks to partition M points in N dimensions into k
clusters. This iterative algorithm searches for a local solution that
minimizes the Euclidean distance between the observations and the
cluster centers. Advantages of the k-means algorithm are that it is
easily implemented and has been used in a wide range of applications
and is computationally efficient (Jain et al., 1999; Steinley, 2006). It
has also been suggested that this algorithm is somewhat less sensitive
to outliers than hierarchical clustering methods (Punj and Stewart,
1983). The initial k-values used in the algorithm can be randomly
selected from the dataset being clustered, or the initial values can
be specified by the user. In this case, we chose to specify the initial
values of the clusters in order to increase the stability of the solution.
Several methods have been proposed to initialize k-means. We used
hierarchical clustering (described below) to identify k-centers and
then using these centers to initialize k-means. Maitra et al. (2010)
found this method of initializing k-means performed best for
small datasets. Following the hierarchical analysis with k-means had
the advantage of minimizing the impact of outlier points on the
solution.

A major obstacle in using k-means is that the number of clusters
(k) must be assigned a priori based either on pre-existing knowledge
of the data or observable characteristics of the data set. Although
there was no pre-existing knowledge of the number of unique spatial
clusters to expect, we used characteristics of air pollutant mixtures in
order to make the best possible selection. This is consistent with the
recommendation of Jain et al. (1999) that subject specific knowledge



Eq. 4
Enrichment factors.

EFij ¼
Sij

PM2:5i
� Sj
PM2:5

where:

EFij represents the Species Fraction of species i at site j
Sij represents the mean Species Concentration (Fe, OC, Na+,

etc.) at site i
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is the best way to select the number of clusters. We considered the
variability of pre-defined pollutant ratios within each cluster. Solu-
tions with less total variability within the clusters were judged to be
better than solutions with more variability within each cluster.
Pollutant concentration ratios considered were: SO4

2−/NO3
−, EC/OC,

Ni/V and Fe/Si. The rational was that solutions that were better at
recognizing sites with similar pollution profiles would also minimize
the variability of these important pollutant rations within each
cluster. The variability of the ratios was reduced by maximizing the
decrease in overall change in deviation as described in Eq. 3. The
percent change in overall deviation represents how effectively differ-
ent solutions capture the unique sources that contributed to the
mixture at the individual sites. The advantage of using this indicator
is that it explicitly uses knowledge of air pollution sources and
contributions to inform the decision of how many clusters best de-
scribe the data. The rational for selecting these ratios is discussed
below.
Eq. 3
Change in overall deviation.

Decrease in overall deviation %ð Þ ¼ 100 � 1−∑
4

i¼1
∑
k

j¼1

1
SSEi

SSWij

" # !

where:

SSW represents the sum of squared errors
SSE represents the sum of squared errors
i represents the diagnostic ratio (SO4/NO3, EC/OC, Ni/V, Fe/Si)
j represents the individual cluster (1 to k)

Sj represents the mean Species Concentration
PM2.5 represents the concentration of PM2.5

i the different sites
j represents the different elements
In addition to maximizing the decrease in the overall deviation,
we sought to minimize the number of clusters containing a single
site in each solution. As the total number clusters increases, the num-
ber of clusters including only 1 site likewise increases. This leads to a
decrease in the % change in overall deviation without necessarily
resulting in a more interpretable solution. K-means was performed
using the function kmeans in R v.2.15.1.

2.4. Hierarchical clustering (Ward's method)

Ward's hierarchical clusteringmethod (Ward, 1963) is an agglomer-
ative process that begins with 1 cluster for every observation and then
iteratively combines the points that lead to the minimal increase in
the sum of squares. Because this method is agglomerative, the solution
reached is constrained by the previous choices made by the algorithm.
Therefore, for a given number of clusters, the solution reached by the
Ward method is often not the solution that has the minimal sum of
squares error. An advantage of this method is that it produces clusters
that are relatively compact. It is criticized for sometimes producing clus-
ters that are too small for the given data (Cormack, 1971). In this paper,
hierarchical clustering was used to initialize k-means. It was also used
after the analysis was completed to group together the clusters with
the most similar enrichment factors. Hierarchical clustering was
performed using the function hclust in R v2.15.1.

2.5. Enrichment factors

Enrichment factors were calculated in order to better compare the
clusters. These enrichment factors represent the enrichment of a
given constituent (element) of PM2.5 within a cluster as compared
to the entire sample (Eq. 1).
2.6. Grouping clusters

Clusters were grouped together based on the enrichment factors
within each cluster. The clustering was performed with hierarchical
clustering using the hclust function in R v.2.15.1.

2.7. Comparing clustering solutions (Rand Index)

The Rand Index is a measure of similarity between two different
partitions of the same data set. The Rand index ranges between 0
and 1 where 0 indicates that two data clusters do not agree on any
pair of points and 1 indicating that the data clusters are exactly the
same. The Rand Index represents a weight of the sites classified to-
gether in the two solutions versus the sites classified separately
(Rand, 1971). In this paper, we used the adjusted Rand Index in
order to compare different clustering solutions. The adjusted Rand
Index, first proposed by Hubert and Arabie (1985) the adjusted
Rand Index corrects the Rand Index for the random chance that
pairs are classified together. Steinley (2004) suggested that an adjust-
ed Rand Index greater than 0.9 reflected excellent agreement, values
greater than 0.8 reflected good agreement, values greater than 0.65
indicated moderate agreement and less than 0.65 indicated poor
agreement.

3. Results

3.1. Selecting the number of clusters k

Selecting the value of k is a balance between the advantage in de-
creasing the variability in the diagnostic ratios within clusters and
minimizing the number of single city clusters in a given solution.
Fig. 2 presents the overall variability of the pollutant ratios alongside
the number of single city clusters for solutions containing between 1
and 50 clusters. Based on the desire to balance these two features, 31
clusters was selected as the optimal value as it represents a significant
drop in the overall decrease in variability measure (55% as compared
to the dataset as a whole) while there are 11 clusters that contain
only a single site. Other possible values of k were explored including
k = 26 and k = 37. The solution of k = 26 was judged to not be sat-
isfactory because it lacked good distinction between east and west
coast cities. The solution for k = 37 was judged to be too unwieldy
because of the high number of single city clusters.
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3.2. Chemical characteristics

The chemical characteristics for the clusters containing 2 or more
cities are presented as heatmaps in Fig. 4. These heatmaps represent
the log of the enrichment factors of the pollutants of interest. For
the heatmap representation, the enrichment factors were logarithmi-
cally transformed so that a value of 0 represents no enrichment, 1
represents 2.7 times enrichment and−1 represents 0.4 times enrich-
ment. The clusters are presented in 4 groupings, where there are
some overall similarities between the clusters in the same grouping.
The similarities were determined based on hierarchical clustering of
the enrichment factors in each cluster.

3.3. Geographic distribution

The locations of the 31 clusters identified are presented by group in
Figs. 6–9. Evident in thesemaps, is that in some cases, sites that are geo-
graphically close belong to different clusters This is due to differences in
composition, even at nearby monitoring sites and will be discussed
further below. There is a clear separation between coastal and interior
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Fig. 3. Variability of the adjusted Rand Index as a function of the number of clusters selected.
(The vertical line represents the number of clusters, k = 31, selected for this study).
monitoring sites as well as between western, central and eastern sites.
This agrees with previous studies showing that PM2.5 composition is
related to geographic location and reflects the impacting sources and
climatic conditions (Bell et al., 2007; Zanobetti and Schwartz, 2008).

3.4. Concentration ratios

To aid in cluster interpretation, the log of the pollutant concentra-
tion ratios of selected species are presented as a heatmap in Fig. 5. Sim-
ilar to the enrichment factors, the pollutant ratios have beennormalized
and represent the ratio in a particular cluster as compared to the entire
sample. These normalized values have been log transformed so that a
value of 0 represents no difference between the cluster and the sample
as a whole, a value of 1 represents 2.7 times increase of the ratio within
this cluster and sample as a whole and a value of −1 represents a 0.4
relationship between the ratio in this cluster and the whole sample.
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Fig. 4. Heatmap of the log of the species enrichment factors by cluster.
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These ratios served as diagnostic tools to aid in attributing the
sites to certain types of pollution regimes. Specifically: 1) higher
SO4

2−/NO3
− ratios indicate a sulfate-dominated system, reflecting pre-

dominance of power plant emissions vs. traffic; 2) higher EC/OC ratios
suggest the predominance of primary carbon from traffic as opposed
to secondary carbon. In some cases, lower EC/OC ratios can also be
indicative of biogenic sources of air pollution; 3) the Ca/Si ratio is
indicative of differences in soil composition between sites; 4) Ni
and V are mostly released from oil combustion and the Ni/V ratio is
affected by the temperature of the combustion process (Peltier and
Lippmann, 2009). The ratio decreases as the temperature of combustion
increases, leading to lower ratios in port locations exposed to emissions
from maritime vessels as compared to those from oil-fired furnaces
(assuming no impact of Ni or V of point sources, such as smelters);
5) higher Fe/Si ratios indicate a larger road dust contribution, relative
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Fig. 6. Group 1, Eastern and Central clusters.
to soil dust (assuming no impact of Fe point sources, such as steel
mills); and 6) higher Pb/Br concentrations suggest enrichment of Pb
with respect to background soil concentrations which can be observed
near smelters. The ratios selected are bynomeans exhaustive andothers
may be of interest in other studies. These were thought to reflect the
source profiles previously identified within the continental United
States.
3.5. Site characteristics

Table 2 shows the classification within each cluster of sites
deemed to be ‘urban’, ‘suburban’ and ‘rural’ based on the designations
assigned by the EPA. Sites do not necessarily have the same designa-
tion within a cluster. In part, this may be related to whether classifi-
cation was influenced by regional pollution versus local pollution.
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Fig. 8. Group 3, Western clusters.
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Fig. 9. Group 4, Coastal clusters.

Table 3
Single city cluster locations.

Cluster City State

21 Birmingham AL
22 Phoenix AZ
23 Tucson AZ
24 Macon GA
25 Missoula MT
26 New York City (Bronx) NY
27 Ironton OH
28 Lorain OH
29 Youngstown OH
30 Pittsburgh PA
31 Chester PA
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3.6. Sampling frequency

As discussed above sites were sampled either every three or six
days. We wanted to verify that taking the global mean of these differ-
ent sites did not lead to bias. In order to do so, we took the sites sam-
pled every 3 days and calculated the global means based on every 6th
sample day (dropping half the data). Of the 109 sites included in the
study, 40 sites were sampled every 3rd day. We found that the ratios
of the 6th day to 3rd day global mean are on average 1.00 with small
standard deviations. Chromium showed a slightly higher standard de-
viation than other elements, but it was considered acceptable. Results
are presented in Table 4.

4. Discussion

Clustering data from 109 monitoring sites across the US yielded a
solution with 31 distinguishable clusters. For each site, a single species
fraction was obtained for the different PM2.5 components of interest.
Although this approach does not account for season differences within
sites, it captures the differences in long-term exposure across different
cities in the United States. The 31 cluster solution was selected in
order to minimize the number of clusters with only a single city as
well as to minimize the variability of selected species ratios within
each cluster. The overall PM2.5 composition differed substantially
among clusters, indicating that this method does allow for an efficient
classification of sites based on their differences in multi-pollutant
relationships. To better understand the clustering results, clusters
containing 2 or more cities were grouped into 4 main types based on
the cluster PM2.5 enrichment by cluster. Although there are differences
between the clusters in each of groups, overall they show similarities in
chemical composition.
Table 2
Location type by cluster.

Eastern US Midwest

Cluster 1 2 3 4 5 6 12 7 8
# Sites 13 12 10 9 8 7 3 5 4
Rural 1 7 3 1 1 3 0 0 0
Suburban 6 3 6 6 2 4 1 2 2
Urban And Center City 6 2 1 2 5 0 2 3 2
The clusters in the first grouping, Eastern US locations, show high to
average SO4

2−/NO3
− ratios, suggesting the considerable impact of power

plant emissions in these locations. This is consistent with previous
studies that identify transported power plant emissions as a major
source of regional air pollution in the Eastern United States (Bell et al.,
2007). The clusters in the second grouping, are impacted by industrial
processes and tend to be are located near large Iron and Steel Mills
(EPA, 2011). These sites show high to average Ni/V, Fe/Si and Pb/Br
ratios. The PM2.5 at these sites is also enriched in metals indicating the
impact of industrial processes relative to the other US areas. This is con-
sistent with research that shows significant contribution of heavy
metals to the PM2.5 composition from industrial point sources (de Foy
et al., 2012; Lee and Hopke, 2006). The third grouping, located in the
Central and Western US, show significantly lower SO4

2−/NO3
− ratios

which confirms that these sites are less impacted by power plant
sources. The fourth grouping, located in coastal sites, has sites that
have average to higher EC/OC ratios as well as higher Ni/V ratios. This
is consistent with studies that have shown ship emissions to include
high concentrations of Ni and V as well as high concentrations of EC
and SO2 (Agrawal et al., 2008; Ault et al., 2010; Isakson et al., 2001).

4.1. Cluster description

4.1.1. Group 1 — Eastern and central US
There are 7 clusters in this group that include a total of 62 single

sites. Some major characteristics of this group are the higher enrich-
ment in SO4

2−, Se and average to low enrichment in elements such
as Si, Ca, Fe, Ni, V, Zn and Mn. Cluster 1 shows particularly high
SO4

2−/NO3
− ratios and lower Ni/V, Fe/Si and Pb/Br. Geographically,

the sites in cluster 1 show geographical cohesiveness and are primarily
in the Southeastern US. The sites in cluster 2 do not show as clear of a
geographical connection; however, they are all predominantly located
in rural and suburban locations. As can be expected, given their lower
urbanization, these sites are less impacted by road emissions as indicated
by a lower EC enrichment factor. Cluster 6 is similar to cluster 2 in that
the sites are mostly in rural and suburban locations and the EC enrich-
ment is low. Amajor difference is that cluster 6 also shows a significantly
lowerNO3

−proportion. This suggests that these sites are less impacted by
agricultural sources. The sites in cluster 3 are primarily located in the
Midwest states. The PM2.5 in this cluster is heavily enriched by Se, an
element whose major source is power plant emissions. Cluster 4 is
Central and Western Coastal
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Table 4
Comparing 3 and 6 day averaging of elements.

Element Mean SD

PM2.5 1.00 0.03
EC 1.00 0.03
OC 1.00 0.02
SO4

2− 1.00 0.03
Se 1.00 0.06
NO3 1.00 0.04
NH4

+ 1.00 0.04
Si 1.00 0.04
Ca 1.00 0.04
Fe 1.00 0.03
Ni 1.00 0.09
V 1.02 0.05
Cu 1.00 0.08
Zn 1.00 0.04
Pb 1.00 0.06
Mn 1.00 0.04
As 1.02 0.05
K 1.01 0.08
Cr 0.99 0.12
Na+ 1.00 0.04
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similar to cluster 3 in both geographic location and chemical composi-
tion. However, this cluster shows less evidence of power plant contribu-
tions as evidenced by average enrichment factors for Se and SO4

2−.
Cluster 5 has lower Ni/V and Fe/Si ratios. Unlike cluster 1 it also has a
low Cu enrichment factor. This cluster is primarily located in the central
part of the country and may represent locations that are affected by SOx

emissions from power plants while having lower metal enrichment
factors. Cluster 12 is distinct because of its relatively high Pb enrichment
factor. Although the concentrations of Pb at these three locations
(Davenport IA, Arnold MO and Buffalo NY) are within EPA guidelines,
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Fig. 10. Heatmaps of s
historic presence of Pb smelters in these locations may explain the ap-
parent enrichment in this element. Although this cluster demonstrates
high concentrations of Pb, it does not group with the clusters in group
2 because other metals do not show high enrichment factors.

4.1.2. Group 2 — Industrial sites
There are 3 clusters in this group that include a total of 11 sites.

Geographically, many of these sites are located in the Midwest, more
specifically in the Great Lakes region. The sites in this group are primar-
ily urban, there are some suburban sites and no rural sites. The enrich-
ment factors for Mn, Zn and Pb are particularly high. The ratios of Ni/V,
Fe/Si and Pb/Br are all elevated in these locations as well. Cluster 7 has
particularly high enrichment factors for Fe, Zn, Pb and Mn, while the
enrichment in Ni is below average. Enrichment in thesemetals suggests
contributions from industrial processes and smelters. Cluster 8 has
average enrichment factors for Pb and Zn, although still shows a higher
enrichment factor for Mn. Cluster 19 is enriched in Mn, suggesting pos-
sible anthropogenic sources in these locations such as alloy production
and steel foundries. In fact, both Canton OH and Waukesha OH are the
location of working steel foundries. Otherwise, cluster 19 is similar to
cluster 7 except that the enrichment factor for Ni is higher in Cluster
19, while the enrichment factor for V is lower.

4.1.3. Group 3 — Central & Western US
There are 5 clusters in this group that include a total of 13 sites.

The main commonality between these sites is the lower enrichment
factor for sulfate and higher enrichment factor for. This results in
low SO4

2−/NO3
− ratios across this group. Clusters 14, 15 and 16 are

all located in California. Cluster 15 (Los Angeles area) has higher EC
enrichment and the highest enrichment in NO3

−. Cluster 14 is
enriched in NO3

− but unlike the other California clusters, it is very
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low in SO4
2− which suggests that there are fewer oil combustion

sources impacting these sites.
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4.1.4. Group 4 — Coastal Sites
There are 5 clusters in this group that include a total of 12 unique

sites. The sites in this cluster are primarily located along the coasts.
Cities in this cluster have higher Ni and very highVanadiumenrichment
factors. They also have a high Na+ enrichment factor. The Ca/Si ratio is
high, a reflection of differences in soil composition at these sites. Cluster
11 encompasses a sampling site in Queens, NY, and a sampling site in
Manhattan, NY. This cluster has the highest enrichment factor of Ni
of all the multi-site clusters identified. The Bronx, NY, location of NYC
clustered separately due to its higher EC. This group is striking in the
geographic distribution of the sites. All sites are either located in prox-
imity to the ocean or to a major body of inland water. It may be that
the Ni/V ratio is shifted in these locations due to marine sources such
as ship engine exhaust.
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Fig. 11. Sensitivity analysis; removing 20% of the observations before calculating global
mean.
4.2. Single site clusters

There were 11 clusters that contained only one city. These cities
are presented in Table 3 along with heatmaps representing the
enrichment factors and normalized ratios at these locations (Fig. 10).
Several of these locations exhibit extreme enrichment factors for one
or more element as well as extremes in the normalized ratios which
helps explains why they do not group with any other sites. On the
other hand, a site such as Ironton, OH, does not exhibit extreme values
in a single element. However, the relationship between the elements at
this site shows somedistinct differences as compared tomulti-city clus-
ters. The clusters most resembling the pollutant distribution of Ironton
are the cities in the Industrial group. These cities have similar Fe/Si ra-
tios and Fe,Mn, Zn and Pb enrichment factors. The Ironton site however,
also demonstrates higher K enrichment as well as a higher EC/OC ratio.
This suggests that this location is impacted bywood combustion aswell
as by emissions from industrial processes.
5. Sensitivity analysis

5.1. Data completeness

Because each site is represented by a set site mean species propor-
tions we wanted to determine how sensitive the results were to the
data points included in calculating the mean. For each site, 20% of the
days were randomly excluded and the mean site species proportions
were recalculated (Fig. 11). This was repeated 100 times. The solutions
obtained were compared to the original one using the Adjusted Rand
Index. The mean agreement between the clustering obtained from the
analysis of the original data and the test data was adequate (Adjusted
Rand Index: 0.66). This test does suggest that there is some sensitivity
to the completeness of the original data and supports the choice to re-
quire greater than 80% completeness for the cities included in the
analysis.
5.2. Sensitivity to site inclusion

The clustering is also subject to which sites are included in the
analysis. As such we randomly removed 10% of the sites and repeated
the clustering over 100 iterations. We compared the adjusted Rand
Index over the 100 iterations, as described above. The results indicate
that the solution is somewhat sensitive to which sites are included in
the clustering (Fig. 12). Overall, the agreement between the test solu-
tions and the original solution were good with a mean adjusted Rand
Index 0.71.
5.3. Number of clusters selected

The selection of 31 as an appropriate number of clusters is not an
absolutely correct solution. The 31 cluster-solution was compared to
other possible solutions encompassing a different number of clusters
(k = 1 to 50) using the Adjusted Rand Index. As shown in Fig. 3, for
values of k values between 26 and 36 the adjusted Rand Index is higher
than 0.70, which suggests that the agreement between solutions is
good. This implies that selecting a different value of k would not have
yielded dramatically different solutions.

5.4. Presence of outlier sites

Because there were 11 single city clusters, we wanted to determine
whether removing these sites from the initial data set affected the clus-
tering of the remaining cities. After removing the 11 single city sites, the
clustering was re-run. The 20 cluster solution on the reduced dataset is
highly comparable to the original clustering with an adjusted rand
index of 0.9, and 97% of cases in matched pairs. This confirms that it is
not necessary to remove outlier sites prior to clustering.

6. Conclusions

The framework presented here provides a novel tool with which
to identify and further classify sites based on their PM2.5 composition.
The 31 clusters identified included 21 clusters with 2 or more sites
which were classified into four groups. The solution presented is
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Fig. 12. Sensitivity analysis; removing 10% of the sites prior to clustering.
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fairly robust to the completeness of data at the sampling sites as well
as to the choice of sites to include.

The clusters in the first grouping are located in the Eastern United
states. They generally have lower to average enrichment factors for N,
V, Si, Ca, Mn and Cr. The urban and rural sites however, are clustering
into separate clusters. These sites show average to high concentra-
tions of SO4

2−, Se and As. The enrichment in EC is average to low
depending on the urbanization and the enrichment in OC is average.
The clusters in the second grouping are located in more industrialized
areas. They generally show average to high enrichment factors for
metals such as Mn, Pb, Zn, Cr and Fe. The enrichment factors of Si,
Ca and Na are average to low. Otherwise, the enrichment factors in
this grouping are average. The clusters in the third grouping are located
in the western and central United States. The enrichment factor for
SO4

2− is very low to average, the enrichment factors of EC and OC are
average to high and the Se is average to low. The enrichment factor of
NO3

− is generally high in this grouping. Overall, the species fractions of
Zn, Pb, Mn and As are low in this grouping. The last grouping corre-
sponds to clusters located in coastal areas. The enrichment factor of
Na+ is average to high, the enrichment factors of Ni and especially the
V ones are average to high. The enrichment in SO4

2- and NO3
− show

some variability within these sites as do the Zn, Mn, K and Cr ones.
Further investigation will be conducted to determine whether the

associations between long-term health effects and the different types
of mixtures provide meaningful information about composition of
PM2.5 and/or types of sources posing higher risks. For example,
meta-analysis of the long-term health response to PM2.5 could
include effect modification by cluster type.
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